

Elementary STATISTICS

9TH EDITION

This page intentionally left blank

Elementary STATISTICS

Neil A. Weiss, Ph.D.
School of Mathematical and Statistical Sciences
Arizona State University

Biographies by Carol A. Weiss

PEARSON

Boston Columbus Indianapolis New York San Francisco

On the cover: Bottlenose dolphins are intelligent and appealing mammals found in tropical oceans and other warm waters. They are well known for their curved mouths, which give the appearance of a welcoming and perpetual smile. According to the National Geographic Society, bottlenose dolphins live between 45 and 50 years in captivity. They are 10 to 14 ft long and, on average, weigh 1100 lb . In the wild, bottlenose dolphins can reach speeds of over 18 miles per hour and have been observed to leap out of the water up to 16 ft .

Cover photograph: Peter Chadwick/Getty Images

Editor in Chief: Deirdre Lynch
Senior Acquisitions Editor: Suzanna Bainbridge
Editorial Assistants: Justin Billing and Salena Casha
Program Team Lead: Marianne Stepanian
Program Manager: Chere Bemelmans
Project Team Lead: Christina Lepre
Project Manager: Shannon Steed
Senior Designer: Barbara T. Atkinson
Manager, Multimedia Production: Christine Stavrou
Multimedia Producer: Stephanie Green

Software Development: Bob Carroll, Marty Wright Senior Marketing Manager: Erin Kelly
Marketing Coordinator: Kathleen DeChavez
Senior Author Support/Technology Specialist: Joe Vetere
Rights and Permissions Advisor: Diahanne Lucas
Senior Procurement Specialist: Carol Melville
Cover Designer: Jenny Willingham
Text Design: Rokusek Design, Inc.
Production Coordination, Composition, and
Illustrations: Aptara Corporation

Acknowledgements of third party content appear on page C-1, which constitutes an extension of this copyright page.

PEARSON, ALWAYS LEARNING, MyStatLab and MathXL are exclusive trademarks in the U.S. and/or other countries owned by Pearson Education, Inc. or its affiliates.

Unless otherwise indicated herein, any third-party trademarks that may appear in this work are the property of their respective owners and any references to third-party trademarks, logos or other trade dress are for demonstrative or descriptive purposes only. Such references are not intended to imply any sponsorship, endorsement, authorization, or promotion of Pearson's products by the owners of such marks, or any relationship between the owner and Pearson Education, Inc. or its affiliates, authors, licensees or distributors.

MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS MAKE NO REPRESENTATIONS ABOUT THE SUITABILITY OF THE INFORMATION CONTAINED IN THE DOCUMENTS AND RELATED GRAPHICS PUBLISHED AS PART OF THE SERVICES FOR ANY PURPOSE. ALL SUCH DOCUMENTS AND RELATED GRAPHICS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS HEREBY DISCLAIM ALL WARRANTIES AND CONDITIONS WITH REGARD TO THIS INFORMATION, INCLUDING ALL WARRANTIES AND CONDITIONS OF MERCHANTABILITY, WHETHER EXPRESS, IMPLIED OR STATUTORY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF INFORMATION AVAILABLE FROM THE SERVICES. THE DOCUMENTS AND RELATED GRAPHICS CONTAINED HEREIN COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN. MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED HEREIN AT ANY TIME. PARTIAL SCREEN SHOTS MAY BE VIEWED IN FULL WITHIN THE SOFTWARE VERSION SPECIFIED.

MICROSOFT ${ }^{\circledR}$ WINDOWS ${ }^{\circledR}$, and MICROSOFT OFFICE ${ }^{\circledR}$ ARE REGISTERED TRADEMARKS OF THE MICROSOFT CORPORATION IN THE U.S.A. AND OTHER COUNTRIES. THIS BOOK IS NOT SPONSORED OR ENDORSED BY OR AFFILIATED WITH THE MICROSOFT CORPORATION.

Library of Congress Cataloging-in-Publication Data

Weiss, N. A. (Neil A.)
Elementary statistics / Neil A. Weiss, Arizona State University ; biographies by Carol A. Weiss. - 9th edition. pages cm
Includes index. ISBN 978-0-321-98939-0

1. Statistics-Textbooks. I. Weiss, Carol A. II. Title.

QA276.12.W445 2016
519.5-dc23

$$
2014020065
$$

Copyright © 2016, 2012, 2008, 2005, 2002, 1999, 1996, 1993, 1989 by Pearson Education, Inc. or its affiliates. All Rights Reserved. Printed in the United States of America. This publication is protected by copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise. For information regarding permissions, request forms and the appropriate contact within the Pearson Education Global Rights \& Permissions department, please visit www.pearsoned.com/permissions/.

123456789 10—CRK—1817161514

About the Author

Neil A. Weiss received his Ph.D. from UCLA and subsequently accepted an assistant professor position at Arizona State University (ASU), where he was ultimately promoted to the rank of full professor. Dr. Weiss has taught statistics, probability, and mathematics-from the freshman level to the advanced graduate level-for more than 30 years.

In recognition of his excellence in teaching, Dr. Weiss received the Dean's Quality Teaching Award from the ASU College of Liberal Arts and Sciences. He has also been runner-up twice for the Charles Wexler Teaching Award in the ASU School of Mathematical and Statistical Sciences. Dr. Weiss's comprehensive knowledge and experience ensures that his texts are mathematically and statistically accurate, as well as pedagogically sound.

In addition to his numerous research publications, Dr. Weiss is the author of A Course in Probability (Addison-Wesley, 2006). He has also authored or coauthored books in finite mathematics, statistics, and real analysis, and is currently working on a new book on applied regression analysis and the analysis of variance. His textswell known for their precision, readability, and pedagogical excellence-are used worldwide.

Dr. Weiss is a pioneer of the integration of statistical software into textbooks and the classroom, first providing such integration in the book Introductory Statistics (AddisonWesley, 1982). He and Pearson Education continue that spirit to this day.

In his spare time, Dr. Weiss enjoys walking, studying and practicing meditation, and playing hold'em poker. He is married and has two sons.

Contents

Preface x
Supplements $\mathbf{x v}$
Technology Resources xvi
Data Sources xviii
PART I Introduction
CHAPTER 1 The Nature of Statistics 1
Case Study: Top Films of All Time $\quad 1$1.1 Statistics Basics 2 - 1.2 Simple Random Sampling 9 - 1.3 OtherSampling Designs* 17 - 1.4 Experimental Designs* 25Chapter in Review 31 - Review Problems 31 - Focusing on Data Analysis 34Case Study Discussion 34 - Biography 34
PART II Descriptive Statistics
CHAPTER 2 Organizing Data 36
Case Study: World's Richest People 36
2.1 Variables and Data 37 • 2.2 Organizing Qualitative Data 42 •
2.3 Organizing Quantitative Data 52 • 2.4 Distribution Shapes 75 • 2.5 Misleading Graphs* 83
Chapter in Review 87 - Review Problems 88 - Focusing on Data Analysis 91 Case Study Discussion 91 - Biography 92
CHAPTER 3 Descriptive Measures 93
Case Study: The Beatles' Song Length 93
3.1 Measures of Center 94 - 3.2 Measures of Variation 105 105
3.3 Chebyshev's Rule and the Empirical Rule* 117 - 3.4 The Five-Number Summary; Boxplots 125 - 3.5 Descriptive Measures for Populations; Use of Samples 139
Chapter in Review 150 - Review Problems 150 - Focusing on Data Analysis 153 - Case Study Discussion 154 - Biography 154

[^0]CHAPTER 4 Descriptive Methods in Regression and Correlation 156
Case Study: Healthcare: Spending and Outcomes 1564.1 Linear Equations with One Independent Variable 157 • 4.2 TheRegression Equation 162 • 4.3 The Coefficient of Determination $176 \bullet$4.4 Linear Correlation 183Chapter in Review 191 - Review Problems 192 - Focusing on DataAnalysis 193 - Case Study Discussion 194 - Biography 194
PART III Probability, Random Variables, and Sampling Distributions
CHAPTER 5 Probability and Random Variables 195
Case Study: Texas Hold'em 195
5.1 Probability Basics 196 - 5.2 Events 203 - 5.3 Some Rules of Probability 212 - 5.4 Discrete Random Variables and Probability Distributions* 218 - 5.5 The Mean and Standard Deviation of a Discrete Random Variable* 226 - 5.6 The Binomial Distribution* 232 Chapter in Review 245 - Review Problems 246 - Focusing on Data Analysis 249 - Case Study Discussion 249 - Biography 250
CHAPTER 6 The Normal Distribution 251
Case Study: Chest Sizes of Scottish Militiamen 251
6.1 Introducing Normally Distributed Variables 252 - 6.2 Areas under the Standard Normal Curve 263 - 6.3 Working with Normally Distributed Variables 269 - 6.4 Assessing Normality; Normal Probability Plots 279
Chapter in Review 285 - Review Problems 286 - Focusing on Data Analysis 288 - Case Study Discussion 288 - Biography 289
CHAPTER 7 The Sampling Distribution of the Sample Mean 290
Case Study: The Chesapeake and Ohio Freight Study 290
7.1 Sampling Error; the Need for Sampling Distributions 291 • 7.2 The Mean and Standard Deviation of the Sample Mean 296 - 7.3 The Sampling Distribution of the Sample Mean 302
Chapter in Review 309 - Review Problems 310 - Focusing on Data Analysis 312 - Case Study Discussion 312 - Biography 312
PART IV Inferential Statistics
CHAPTER 8 Confidence Intervals for One Population Mean 314
Case Study: Bank Robberies: A Statistical Analysis 314
8.1 Estimating a Population Mean 315 - 8.2 Confidence Intervals for One Population Mean When σ Is Known 321 - 8.3 Confidence Intervals for One Population Mean When σ Is Unknown 335
Chapter in Review 346 - Review Problems 346 - Focusing on Data Analysis 349 - Case Study Discussion 349 - Biography 349

[^1]CHAPTER 9 Hypothesis Tests for One Population Mean 350
Case Study: Gender and Sense of Direction 3509.1 The Nature of Hypothesis Testing 351 - 9.2 Critical-Value Approach toHypothesis Testing 359 • 9.3 P-Value Approach to Hypothesis Testing 364 •9.4 Hypothesis Tests for One Population Mean When σ Is Known 3709.5 Hypothesis Tests for One Population Mean When σ Is Unknown 382Chapter in Review 391 - Review Problems 392 - Focusing on DataAnalysis 396 - Case Study Discussion 396 - Biography 397
CHAPTER 10 Inferences for Two Population Means 398
Case Study: Dexamethasone Therapy and IQ 398
10.1 The Sampling Distribution of the Difference between Two Sample Means forIndependent Samples 399 - 10.2 Inferences for Two Population Means, UsingIndependent Samples: Standard Deviations Assumed Equal 406 •10.3 Inferences for Two Population Means, Using Independent Samples:Standard Deviations Not Assumed Equal 418 - 10.4 Inferences for TwoPopulation Means, Using Paired Samples 431
Chapter in Review 445 - Review Problems 445 - Focusing on DataAnalysis 448 - Case Study Discussion 449 - Biography 449
CHAPTER 11 Inferences for Population Proportions 450
Case Study: Arrested Youths 450
11.1 Confidence Intervals for One Population Proportion 451
11.2 Hypothesis Tests for One Population Proportion 463 • 11.3 Inferencesfor Two Population Proportions 467Chapter in Review 479 - Review Problems 479 - Focusing on DataAnalysis 481 - Case Study Discussion 481 • Biography 481
CHAPTER 12 Chi-Square Procedures 482
Case Study: Eye and Hair Color 482
12.1 The Chi-Square Distribution 483 • 12.2 Chi-Square Goodness-of-FitTest 484 - 12.3 Contingency Tables; Association 493 • 12.4 Chi-SquareIndependence Test 503 • 12.5 Chi-Square Homogeneity Test 512
Chapter in Review 519 - Review Problems 520 - Focusing on DataAnalysis 523 - Case Study Discussion 523 - Biography 523
CHAPTER 13 Analysis of Variance (ANOVA) 524
Case Study: Self-Perception and Physical Activity 524
13.1 The F-Distribution 525 • 13.2 One-Way ANOVA: The Logic 527 •
13.3 One-Way ANOVA: The Procedure 533
Chapter in Review 546 - Review Problems 547 - Focusing on DataAnalysis 548 - Case Study Discussion 549 - Biography 549
CHAPTER 14 Inferential Methods in Regression and Correlation 550
Case Study: Shoe Size and Height 550
14.1 The Regression Model; Analysis of Residuals 551 • 14.2 Inferences forthe Slope of the Population Regression Line 563 - 14.3 Estimation andPrediction 571 - 14.4 Inferences in Correlation 581Chapter in Review 587 - Review Problems 587 - Focusing on DataAnalysis 589 - Case Study Discussion 589 - Biography 590

Appendixes

Appendix A Statistical Tables A-1
Appendix B Answers to Selected Exercises A-19
Index I-1
Photo Credits C-1
WeissStats Resource Site (brief contents)

Note: Visit the WeissStats Resource Site at www.pearsonhighered.com/weiss-stats for detailed contents.
Additional Statistical Tables JMP Concept Discovery Modules

Applets Minitab Macros
Data Sets Procedures Booklet
Data Sources StatCrunch Reports
Focus Database Technology Basics
Formulas
TI Programs
Further Topics in Probability

Preface

Using and understanding statistics and statistical procedures have become required skills in virtually every profession and academic discipline. The purpose of this book is to help students master basic statistical concepts and techniques and to provide real-life opportunities for applying them.

Audience and Approach

Elementary Statistics is intended for a one-quarter or onesemester course. Instructors can easily fit the text to the pace and depth they prefer. Introductory high school algebra is a sufficient prerequisite.

Although mathematically and statistically sound (the author has also written books at the senior and graduate levels), the approach does not require students to examine complex concepts. Rather, the material is presented in a natural and intuitive way. Simply stated, students will find this book's presentation of introductory statistics easy to understand.

About This Book

Elementary Statistics presents the fundamentals of statistics, featuring data production and data analysis. Data exploration is emphasized as an integral prelude to statistical inference.

This edition of Elementary Statistics continues the book's tradition of being on the cutting edge of statistical pedagogy, technology, and data analysis. It includes hundreds of new and updated exercises with real data from journals, magazines, newspapers, and websites.

The following Guidelines for Assessment and Instruction in Statistics Education (GAISE), funded and endorsed by the American Statistical Association, are supported and adhered to in Elementary Statistics:

- Emphasize statistical literacy and develop statistical thinking.
- Use real data.
- Stress conceptual understanding rather than mere knowledge of procedures.
- Foster active learning in the classroom.
- Use technology for developing conceptual understanding and analyzing data.
- Use assessments to improve and evaluate student learning.

Changes in the Ninth Edition

The goal for this edition was to create an even more flexible and user-friendly book, to provide several new step-by-step procedures for making statistical analyses easier to apply, to add a fourth category of exercises, to expand the use of technology for developing understanding and analyzing data, and to refurbish the exercises. Several important revisions are presented as follows.

New! New Case Studies. Roughly 60% of the chapteropening case studies have been replaced.

New! New and Revised Exercises. This edition contains about $\mathbf{2 3 5 0}$ high-quality exercises, which far exceeds what is found in typical introductory statistics books. Over 35\% of the exercises are new, updated, or modified.

New! WeissStats Resource Site. The WeissStats Resource Site (aka WeissStats site) provides an extensive array of resources for both instructors and students, including additional topics, applets, all data sets from the book in multiple formats, a procedures booklet, and technology appendixes. In addition to several new items, the site offers universal access to those items formerly included on the WeissStats CD. Refer to the table of contents for a brief list of the contents of the WeissStats site or visit the site at www.pearsonhighered.com/weiss-stats. Note: Resources for instructors only are available on the Instructor Resource Center at www.pearsonhighered.com/irc.

New! Chebyshev's Rule and the Empirical Rule. A new (optional) section of Chapter 3 has been added that is dedicated to an examination of Chebyshev's rule and the empirical rule. The empirical rule is further examined in Chapter 6 when the normal distribution is discussed.

New! Quartiles. The method for calculating quartiles has been modified to make it more easily accessible to students. Furthermore, a dedicated procedure that provides a step-by-step method for finding the quartiles of a data set has been included.

Revised! Distribution Shapes. The material on distribution shapes in Section 2.4 has been significantly modified
and clarified. Students will find this revised approach easier to understand and apply.

Revised! Regression Analysis. Major improvements have been made to the chapter on Descriptive Methods in Regression and Correlation. These improvements include a comprehensive discussion of scatterplots, a simpler introduction to the least-squares criterion, and easier introductory examples for the regression equation, the sums of squares and coefficient of determination, and the linear correlation coefficient.

Expanded! Warm-up Exercises. In this edition, hundreds of "warm-up" exercises have been added. These exercises provide context-free problems that allow students to concentrate solely on the relevant concepts before moving on to applied exercises.

Expanded! Density Curves. The discussion of density curves has been significantly expanded and now includes several examples and many more exercises.

Note: See the Technology section of this preface for a discussion of technology additions, revisions, and improvements.

Hallmark Features and Approach

Chapter-Opening Features. Each chapter begins with a general description of the chapter, an explanation of how the chapter relates to the text as a whole, and a chapter outline. A classic or contemporary case study highlights the real-world relevance of the material.

End-of-Chapter Features. Each chapter ends with features that are useful for review, summary, and further practice.

- Chapter Reviews. Each chapter review includes chapter objectives, a list of key terms with page references, and review problems to help students review and study the chapter. Items related to optional materials are marked with asterisks, unless the entire chapter is optional.
- Focusing on Data Analysis. This feature lets students work with large data sets, practice technology use, and discover the many methods of exploring and analyzing data. For details, see the introductory Focusing on Data Analysis section on page 34 of Chapter 1.
- Case Study Discussion. At the end of each chapter, the chapter-opening case study is reviewed and discussed in light of the chapter's major points, and then problems are presented for students to solve.
- Biographical Sketches. Each chapter ends with a brief biography of a famous statistician. Besides being of general interest, these biographies teach students about the development of the science of statistics.

Formula/Table Card. The book's detachable formula/table card (FTC) contains all the formulas and many of the tables
that appear in the text. The FTC is helpful for quick-reference purposes; many instructors also find it convenient for use with examinations.

Procedure Boxes, Index, and Booklet. To help students learn how to perform statistical analyses, easy-to-follow, step-by-step procedures have been provided. Each step is highlighted and presented again within the illustrating example. This approach shows how the procedure is applied and helps students master its steps. Additionally:

- A Procedure Index (located near the front of the book) provides a quick and easy way to find the right procedure for performing any statistical analysis.
- A Procedures Booklet (available in the Procedures Booklet section of the WeissStats Resource Site) provides a convenient way to access any required procedure.

ASA/MAA-Guidelines Compliant. Elementary Statistics follows American Statistical Association (ASA) and Mathematical Association of America (MAA) guidelines, which stress the interpretation of statistical results, the contemporary applications of statistics, and the importance of critical thinking.

Populations, Variables, and Data. Through the book's consistent and proper use of the terms population, variable, and data, statistical concepts are made clearer and more unified. This strategy is essential for the proper understanding of statistics.

Data Analysis and Exploration. Data analysis is emphasized, both for exploratory purposes and to check assumptions required for inference. Recognizing that not all readers have access to technology, the book provides ample opportunity to analyze and explore data without the use of a computer or statistical calculator.

Parallel Critical-Value/P-Value Approaches. Through a parallel presentation, the book offers complete flexibility in the coverage of the critical-value and P-value approaches to hypothesis testing. Instructors can concentrate on either approach, or they can cover and compare both approaches. The dual procedures, which provide both the critical-value and P-value approaches to a hypothesis-testing method, are combined in a side-by-side, easy-to-use format.

Interpretations. This feature presents the meaning and significance of statistical results in everyday language and highlights the importance of interpreting answers and results.

You Try It! This feature, which follows most examples, allows students to immediately check their understanding by working a similar exercise.

What Does It Mean? This margin feature states in "plain English" the meanings of definitions, formulas, key facts, and some discussions-thus facilitating students' understanding of the formal language of statistics.

Examples and Exercises

Real-World Examples. Every concept discussed in the text is illustrated by at least one detailed example. Based on real-life situations, these examples are interesting as well as illustrative.

Real-World Exercises. Constructed from an extensive variety of articles in newspapers, magazines, statistical abstracts, journals, and websites, the exercises provide current, realworld applications whose sources are explicitly cited.

New to this edition, a fourth category of exercises has been added, namely, Applying the Concepts and Skills. As a consequence, the exercise sets are now divided into the following four categories:

- Understanding the Concepts and Skills exercises help students master the basic concepts and skills explicitly discussed in the section. These exercises consist of two types: (1) Non-computational problems that test student understanding of definitions, formulas, and key facts; (2) "warm-up" exercises, which require only simple computations and provide context-free problems that allow students to concentrate solely on the relevant concepts before moving on to applied exercises. For pedagogical reasons, it is recommended that warm-up exercises be done without the use of a statistical technology.
- Applying the Concepts and Skills exercises provide students with an extensive variety of applied problems that hone student skills with real-life data. These exercises can be done with or without the use of a statistical technology, at the instructor's discretion.
- Working with Large Data Sets exercises are intended to be done with a statistical technology and let students apply and interpret the computing and statistical capabilities of Minitab ${ }^{\circledR}$, Excel ${ }^{\circledR}$, the TI-83/84 Plus ${ }^{\circledR}$, or any other statistical technology.
- Extending the Concepts and Skills exercises invite students to extend their skills by examining material not necessarily covered in the text. These exercises include many critical-thinking problems.

Notes: An exercise number set in cyan indicates that the exercise belongs to a group of exercises with common instructions. Also, exercises related to optional materials are marked with asterisks, unless the entire section is optional.

Data Sets. In most examples and exercises, both raw data and summary statistics are presented. This practice gives a more realistic view of statistics and lets students solve problems by computer or statistical calculator. More than $\mathbf{8 5 0}$ data sets are included, many of which are new or updated. All data sets are available in multiple formats in the Data Sets section of the WeissStats Resource Site, www.pearsonhighered.com/weiss-stats.

Technology

Parallel Presentation. The book's technology coverage is completely flexible and includes options for use of Minitab, Excel, and the TI-83/84 Plus. Instructors can concentrate on one technology or cover and compare two or more technologies.

Updated! The Technology Center. This in-text, statistical-technology presentation discusses three of the most popular applications-Minitab, Excel, and the TI83/84 Plus graphing calculators-and includes step-by-step instructions for the implementation of each of these applications. The Technology Centers are integrated as optional material and reflect the latest software releases.

Updated! Technology Appendixes. The appendixes for Excel, Minitab, and the TI-83/84 Plus have been updated to correspond to the latest versions of these three statistical technologies. These appendixes introduce the three statistical technologies, explain how to input data, and discuss how to perform other basic tasks. They are entitled Getting Started with ... and are located in the Technology Basics section of the WeissStats Resource Site, www.pearsonhighered.com/weiss-stats.

Expanded! Built-in Technology Manuals. The Technology Center features (in the book) and the technology appendixes (on the WeissStats site) make it unnecessary for students to purchase technology manuals. Students who will be using Minitab, Excel, or the TI-83/84 Plus to solve exercises should study the appropriate technology appendix(es) before commencing with The Technology Center sections.

Expanded! TI Programs. The TI-83/84 Plus does not have built-in applications for a number of the statistical analyses discussed in the book. So that users of the TI-83/84 Plus can do such analyses with their calculators, the author has made available TI programs. Those programs are obtainable from the TI Programs section of the WeissStats Resource Site.

Computer Simulations. Computer simulations, appearing in both the text and the exercises, serve as pedagogical aids for understanding complex concepts such as sampling distributions.

StatCrunch
Interactive StatCrunch Reports. Fifty-four StatCrunch reports have been written specifically for Elementary Statistics. Each report corresponds to a statistical analysis covered in the book. These interactive reports, keyed to the book with a StatCrunch icon, explain how to use StatCrunch online statistical software to solve problems previously solved by hand in the book. Go to www.statcrunch.com, choose Explore $\boldsymbol{\nabla}$ Groups, and search "Weiss Elementary Statistics 9/e" to access the

StatCrunch Reports. Alternatively, you can access these reports from the document Access to StatCrunch Reports.pdf, which is in the StatCrunch section of the WeissStats Resource Site. Note: Analyzing data in StatCrunch requires a MyStatLab or StatCrunch account.
applet Java Applets. Nineteen Java applets have been custom written for Elementary Statistics. These applets, keyed to the book with an applet icon, give students additional interactive activities for the purpose of clarifying statistical concepts in an interesting and fun way. The applets
are available from the Applets section of the WeissStats Resource Site.

Organization

Elementary Statistics offers considerable flexibility in choosing material to cover. The following flowchart indicates different options by showing the interdependence among chapters; the prerequisites for a given chapter consist of all chapters that have a path that leads to that chapter.

Acknowledgments

For this and the previous few editions of the book, it is our pleasure to thank the following reviewers, whose comments and suggestions resulted in significant improvements:

Olcay Akman, Illinois State University James Albert, Bowling Green State University John F. Beyers, II, University of Maryland, University College
David K. Britz, Raritan Valley Community College
Josef Brown, New Mexico Tech
Yvonne Brown, Pima Community College
Beth Chance, California Polytechnic State University
Brant Deppa, Winona State University
Carol DeVille, Louisiana Tech University

Jacqueline Fesq, Raritan Valley Community College
Robert Forsythe, Frostburgh State University
Richard Gilman, Holy Cross College
Donna Gorton, Butler Community College
David Groggel, Miami University
Joel Haack, University of Northern Iowa
Bernard Hall, Newbury College
Jessica Hartnett, Gannon College
Jane Harvill, Baylor University
Lance Hemlow, Raritan Valley Community College

Susan Herring, Sonoma State University
David Holmes, The College of New Jersey
Lorraine Hughes, Mississippi State University
Michael Hughes, Miami University
Satish Iyengar, University of Pittsburgh
Yvette Janecek, Blinn College
Jann-Huei Jinn, Grand Valley State University
Jeffrey Jones, County College of Morris
Thomas Kline, University of Northern Iowa
Lynn Kowski, Raritan Valley Community College
Christopher Lacke, Rowan University
Sheila Lawrence, Rutgers University
Tze-San Lee, Western Illinois University
Ennis Donice McCune, Stephen F. Austin
State University
Jackie Miller, The Ohio State University
Luis F. Moreno, Broome Community College
Bernard J. Morzuch, University of Massachusetts, Amherst
Dennis M. O'Brien, University of Wisconsin, La Crosse
Dwight M. Olson, John Carroll University
Bonnie Oppenheimer, Mississippi University for Women
JoAnn Paderi, Lourdes College
Melissa Pedone, Valencia Community College
Alan Polansky, Northern Illinois University
Cathy D. Poliak, Northern Illinois University
Kimberley A. Polly, Indiana University
Our thanks are also extended to Joe Fred Gonzalez, Jr., for his many suggestions over the years for improving the book; and to Daniel Collins, Fuchun Huang, Charles Kaufman, Sharon Lohr, Richard Marchand, Shahrokh Parvini, Kathy Prewitt, Walter Reid, and Bill Steed, with whom we have had several illuminating consultations. Thanks also go to Matthew Hassett and Ronald Jacobowitz for their many helpful comments and suggestions.

Several other people provided useful input and resources. They include Thomas A. Ryan, Jr., Webster West, William Feldman, Frank Crosswhite, Lawrence W. Harding, Jr., George McManus, Greg Weiss, Jeanne Sholl, R. B. Campbell, Linda Holderman, Mia Stephens, Howard Blaut, Rick Hanna, Alison Stern-Dunyak, Dale Phibrick, Christine Sarris, and Maureen Quinn. Our sincere thanks go to all of them for their help in making this a better book.

Thanks to Larry Griffey for his formula/table card. Our gratitude also goes to Toni Garcia for writing the Instructor's Solutions Manual and the Student's Solutions Manual.

We express our appreciation to Dennis Young for his linear models modules and for his collaboration on numerous statistical and pedagogical issues. For checking the accuracy of the entire text and answers to the exercises, we extend our gratitude to Todd Hendricks and Susan Herring.

We are also grateful to David Lund and Patricia Lee for obtaining the database for the Focusing on Data Analysis sections. Our thanks are extended to the following people for their research in finding myriad interesting statistical studies and data for the examples, exercises, and case studies: Toni Garcia, Traci Gust, David Lund, Jelena Milovanovic, and Greg Weiss.

Geetha Ramachandran, California State University
B. Madhu Rao, Bowling Green State University

Gina F. Reed, Gainesville College
Steven E. Rigdon, Southern Illinois University, Edwardsville
Kevin M. Riordan, South Suburban College
Sharon Ross, Georgia Perimeter College
Edward Rothman, University of Michigan
Rina Santos, College of Alameda
George W. Schultz, St. Petersburg College
Arvind Shah, University of South Alabama
Sean Simpson, Westchester Community College, SUNY
Cid Srinivasan, University of Kentucky, Lexington
W. Ed Stephens, McNeese State University

Kathy Taylor, Clackamas Community College
Alane Tentoni, Northwest Mississippi Community College
Bill Vaughters, Valencia Community College
Roumen Vesselinov, University of South Carolina
Brani Vidakovic, Georgia Institute of Technology
Jackie Vogel, Austin Peay State University
Donald Waldman, University of Colorado, Boulder
Daniel Weiner, Boston University
Dawn White, California State University, Bakersfield
Marlene Will, Spalding University
Latrica Williams, St. Petersburg College
Matthew Wood, University of Missouri, Columbia
Nicholas A. Zaino Jr., University of Rochester
Many thanks go to Christine Stavrou and Stephanie Green for directing the development of the WeissStats Resource Site and to Cindy Scott, Carol Weiss, and Dennis Young for constructing the data files. Our appreciation also goes to our software editors, Bob Carroll and Marty Wright.

We are grateful to Kelly Ricci of Aptara Corporation, who, along with Marianne Stepanian, Shannon Steed, Chere Bemelmans, Christina Lepre, Joe Vetere, and Sonia Ashraf of Pearson Education, coordinated the development and production of the book. We also thank our copyeditor, Bret Workman, and our proofreaders, Carol Weiss, Greg Weiss, Mercedes Heston, Danielle Kortan, and Cindy Scott.

To Barbara Atkinson (Pearson Education) and Rokusek Design, Inc., we express our thanks for awesome interior and cover designs. Our sincere thanks also go to all the people at Aptara for a terrific job of composition and illustration. We thank Aptara Corporation for photo research.

Without the help of many people at Pearson Education, this book and its numerous ancillaries would not have been possible; to all of them go our heartfelt thanks. In addition to the Pearson Education people mentioned above, we give special thanks to Greg Tobin and Deirdre Lynch, and to the following other people at Pearson Education: Suzanna Bainbridge, Ruth Berry, Justin Billing, Salena Casha, Erin Kelly, Kathleen DeChavez, Diahanne Lucas, Caroline Fell, and Carol Melville.

Finally, we convey our appreciation to Carol A. Weiss. Apart from writing the text, she was involved in every aspect of development and production. Moreover, Carol did a superb job of researching and writing the biographies.
N.A.W.

Supplements

Student Supplements

Student's Edition

- This version of the text includes the answers to the oddnumbered Understanding the Concepts and Skills exercises, the odd-numbered Applying the Concepts and Skills exercises, and all Review Problems of those two exercise categories. (The Instructor's Edition contains the answers to all of those exercises.)
- ISBN: 0-321-98939-2 / 978-0-321-98939-0

Student's Solutions Manual

- Written by Toni Garcia, this supplement contains detailed, worked-out solutions to the odd-numbered section exercises (Understanding the Concepts and Skills, Applying the Concepts and Skills, Working with Large Data Sets, and Extending the Concepts and Skills) and all Review Problems.
- ISBN: 0-321-98965-1 / 978-0-321-98965-9

WeissStats Resource Site

(aka WeissStats site)

- This website offers universal access to an extensive array of resources: additional topics, applets, all data sets from the book in multiple formats, a procedures booklet, technology appendixes, and much more.
- URL: www.pearsonhighered.com/weiss-stats.

Instructor Supplements

Instructor's Edition

- This version of the text includes the answers to all of the Understanding the Concepts and Skills exercises and Applying the Concepts and Skills exercises. (The Student's

Edition contains the answers to only the odd-numbered ones in the sections.)

- ISBN: 0-321-98972-4 / 978-0-321-98972-7

Instructor's Solutions Manual (download only)

- Written by Toni Garcia, this supplement contains detailed, worked-out solutions to all of the section exercises (Understanding the Concepts and Skills, Applying the Concepts and Skills, Working with Large Data Sets, and Extending the Concepts and Skills), the Review Problems, the Focusing on Data Analysis exercises, and the Case Study Discussion exercises.
- Available for download within MyStatLab or at www.pearsonhighered.com/irc.

Online Test Bank

- Written by Michael Butros, this supplement provides three examinations for each chapter of the text.
- Answer keys are included.
- Available for download within MyStatLab or at www.pearsonhighered.com/irc.

TestGen ${ }^{\circledR}$

TestGen ${ }^{\circledR}$ (www.pearsoned.com/testgen) enables instructors to build, edit, print, and administer tests using a computerized bank of questions developed to cover all the objectives of the text. TestGen is algorithmically based, allowing instructors to create multiple but equivalent versions of the same question or test with the click of a button. Instructors can also modify test bank questions or add new questions. The software and testbank are available for download from Pearson Education's online catalog.

PowerPoint Lecture Presentation

- Classroom presentation slides are geared specifically to the sequence of this textbook.
- These PowerPoint slides are available within MyStatLab or at www.pearsonhighered.com/irc.

Technology Resources

Minitab ${ }^{\circledR}$

This software is a condensed version of the Professional release of MINITAB statistical software. It offers the full range of statistical methods and graphical capabilities, along with worksheets that can include up to 10,000 data points. Individual copies of the software can be bundled with the text (CD only) ISBN: 0-13-143661-9 / 978-0-13-143661-9.

XLSTAT ${ }^{\text {TM }}$ (access code required)

The XLSTAT statistical analysis add-in offers a wide variety of functions to enhance analytical capabilities of Microsoft Excel ${ }^{\circledR}$, making it an ideal tool for your everyday data analysis and statistics requirements. This version has been specifically built for your course. XLSTAT is compatible with all Excel versions (except 2008 for Mac). To register, visit www.pearsonhighered.com/xlstat.

JMP ${ }^{\circledR}$ Student Edition

JMP Student Edition is an easy-to-use, streamlined version of JMP desktop statistical discovery software from SAS Institute Inc. and is available for bundling with the text (ISBN: 0-321-89164-3 / 978-0-321-89164-8).

IBM ${ }^{\circledR}$ SPSS ${ }^{\circledR}$ Statistics Student Version

SPSS, a statistical and data management software package, is also available for bundling with the text (ISBN: 0-321-97825-0 / 978-0-321-97825-7).

MathXL ${ }^{\circledR}$ for Statistics Online Course (access code required)

MathXL ${ }^{\circledR}$ is the homework and assessment engine that runs MyStatLab. (MyStatLab is MathXL plus a learning management system.)

With MathXL for Statistics, instructors can:

- Create, edit, and assign online homework and tests using algorithmically generated exercises correlated at the objective level to the textbook.
- Create and assign their own online exercises and import TestGen tests for added flexibility.
- Maintain records of all student work, tracked in MathXL's online gradebook.
With MathXL for Statistics, students can:
- Take chapter tests in MathXL and receive personalized study plans and/or personalized homework assignments based on their test results.
- Use the study plan and/or the homework to link directly to tutorial exercises for the objectives they need to study.
- Students can also access supplemental animations and video clips directly from selected exercises.
- Knowing that students often use external statistical software, we make it easy to copy our data sets, both from the eText and the MyStatLab questions, into software like StatCrunch ${ }^{\text {TM }}$, Minitab, Excel, and more.

MathXL for Statistics is available to qualified adopters. For more information, visit our website at www.mathxl.com, or contact your Pearson representative.

MyStatLab ${ }^{\text {TM }}$ Online Course (access code required)

MyStatLab from Pearson is the world's leading online resource in statistics, integrating interactive homework, assessment, and media in a flexible, easy-to-use format. MyStatLab is a course management system that delivers proven results in helping individual students succeed.

- MyStatLab can be implemented successfully in any environment-lab-based, hybrid, fully online, traditionaland demonstrates the quantifiable difference that integrated usage has on student retention, subsequent success, and overall achievement.
- MyStatLab's comprehensive online gradebook automatically tracks students' results on tests, quizzes, homework, and in the study plan. Instructors can use the gradebook to provide positive feedback or intervene if students have trouble. Gradebook data can be easily exported to a variety of spreadsheet programs, such as Microsoft Excel. Instructors can determine which points of data to export, and then analyze the results to determine success.

MyStatLab provides engaging experiences that personalize, stimulate, and measure learning for each student. In addition to the resources below, each course includes a full interactive online version of the accompanying textbook.

- Tutorial Exercises with Multimedia Learning Aids: The homework and practice exercises in MyStatLab align with the exercises in the textbook, and most regenerate algorithmically to give students unlimited opportunity for practice and mastery. Exercises offer immediate helpful feedback, guided solutions, sample problems, animations, videos, and eText clips for extra help at point-of-use.
- MyStatLab Accessibility: MyStatLab is compatible with the JAWS $12 / 13$ screen reader, and enables multiplechoice and free-response problem-types to be read and interacted with via keyboard controls and math notation input.
- StatTalk Videos: Fun-loving statistician Andrew Vickers takes to the streets of Brooklyn, NY, to demonstrate important statistical concepts through interesting stories and real-life events. This series of 24 fun and engaging videos will help students actually understand statistical concepts. Available with an instructor's user guide and assessment questions.
- Additional Question Libraries: In addition to algorithmically regenerated questions that are aligned with your textbook, MyStatLab courses come with two additional question libraries:
- 450 exercises in Getting Ready for Statistics cover the developmental math topics students need for the course. These can be assigned as a prerequisite to other assignments, if desired.
- 1000 exercises in the Conceptual Question Library require students to apply their statistical understanding.
- StatCrunch ${ }^{\text {TM }}$: MyStatLab integrates the web-based statistical software, StatCrunch, within the online assessment platform so that students can easily analyze data sets from exercises and the text. In addition, MyStatLab includes access to www.statcrunch.com, a website where users can access tens of thousands of shared data sets, create and conduct online surveys, perform complex analyses using the powerful statistical software, and generate compelling reports.
- Statistical Software, Support and Integration: We make it easy to copy our data sets, both from the eText and the MyStatLab questions, into software such as StatCrunch, Minitab, Excel, and more. Students have access to a variety of support tools-Technology Tutorial Videos, Technology Study Cards, and Technology Manuals for select titles-to learn how to effectively use statistical software. And, MyStatLab comes from an experienced partner with educational expertise and an eye on the future.
- Knowing that you are using a Pearson product means knowing that you are using quality content. That means that our eTexts are accurate and our assessment tools work. It means we are committed to making MyStatLab as accessible as possible.
- Whether you are just getting started with MyStatLab, or have a question along the way, we're here to help you learn about our technologies and how to incorporate them into your course.

To learn more about how MyStatLab combines proven learning applications with powerful assessment, visit www.mystatlab.com or contact your Pearson representative.

StatCrunch ${ }^{\circledR}$ StatCrunch

StatCrunch is powerful web-based statistical software that allows users to perform complex analyses, share data sets, and generate compelling reports of their data. The vibrant online community offers tens of thousands of shared data sets for students to analyze.

- Collect. Users can upload their own data to StatCrunch or search a large library of publicly shared data sets, spanning almost any topic of interest. Also, an online survey tool allows users to quickly collect data via web-based surveys.
- Crunch. A full range of numerical and graphical methods allow users to analyze and gain insights from any data set. Interactive graphics help users understand statistical concepts, and are available for export to enrich reports with visual representations of data.
- Communicate. Reporting options help users create a wide variety of visually-appealing representations of their data.

Full access to StatCrunch is available with a MyStatLab kit, and StatCrunch is available by itself to qualified adopters. StatCrunch Mobile is now available, just visit www.statcrunch.com from the browser on your smartphone or tablet. For more information, visit our website at www.statcrunch.com, or contact your Pearson representative.

Data Sources

1stock1
A Handbook of Small Data Sets
A. C. Nielsen Company

AAA Foundation for Traffic Safety
AAMC Faculty Roster
AAUP Annual Report on the Economic
Status of the Profession
ABC Global Kids Study
ABCNEWS Poll
Accident Facts
ACT High School Profile Report
ACT, Inc.
Acta Opthalmologica
AFI's 100 Years. . . 100 Movies - 10th
Anniversary Edition
Agricultural Marketing Service
AHA Hospital Statistics
Air Travel Consumer Report
Alcohol Consumption and Related
Problems: Alcohol and Health
Monograph 1
All About Diabetes
Alzheimer's Care Quarterly
American Association of University Professors
American Community Survey
American Council of Life Insurers
American Demographics
American Diabetes Association
American Express Retail Index
American Film Institute
American Hospital Association
American Hospital Association Annual Survey
American Housing Survey for the United States
American Industrial Hygiene Association Journal
American Journal of Applied Sciences
American Journal of Clinical Nutrition
American Journal of Obstetrics and Gynecology
American Journal of Political Science
American Laboratory
American Scientist
American Statistical Association
American Statistician
American Veterinary Medical Association
American Wedding Study
America's Families and Living Arrangements

America's Network Telecom Investor Supplement
Amstat News
Amusement Business
Analytical Chemistry
Analytical Services Division Transport Statistics
Animal Action Report
Animal Behaviour
Annals of Epidemiology
Anthropometric Reference Data
for Children and Adults
Appetite
Applied Psychology in Criminal Justice
Aquaculture
Aquatic Biology
Arbitron
Archives of Physical Medicine and Rehabilitation
Arizona Department of Revenue
Arizona Republic
Arizona Residential Property Valuation System
Arizona State University
Arizona State University Enrollment Summary
Arthritis Today
Asian Import
Associated Newspapers Ltd
Association of American Medical Colleges
Association of American Universities
Atlantic Hurricane Database
Atlantic Oceanographic \& Meteorological Laboratory
Auckland University of Technology
Augusta National Golf Club
Australian Journal of Rural Health
Australian Journal of Zoology
Auto Trader
Avis Rent-A-Car
Baltimore Ravens
BARRON'S
Baseball Almanac
BBC News Magazine
Beachbody, LLC
Beer Institute Annual Report
Behavior Research Center
Behavioral Risk Factor Surveillance System
Summary Prevalence Report
Behavioural Pharmacology
Bell Systems Technical Journal

Biofuel Transportation Database
Biological Conservation
Biology of Sex Differences
Biometrics
Biometrika
BioScience
Board of Governors of the Federal Reserve System
Boston Athletic Association
Box Office Mojo
Boyce Thompson Southwestern Arboretum
Brewer's Almanac
Bride's Magazine
British Bankers' Association
British Journal of Educational Psychology
British Journal of Haematology
British Journal of Visual Impairment
British Medical Journal
Brokerage Report
Bureau of Crime Statistics and Research of Australia
Bureau of Economic Analysis
Bureau of Educational and Cultural Affairs
Bureau of Justice Statistics
Bureau of Justice Statistics Special Report
Bureau of Labor Statistics
Business Times
California Agriculture
California Wild: Natural Sciences for Thinking Animals
Car Shopping Trends Report
CareerBuilder
Celebrity Net Worth
Cellular Telecommunications \& Internet Association
Census of Agriculture
Centers for Disease Control and Prevention
Central Election Commission of the Russian Federation
Central Intelligence Agency
Chance
Characteristics of New Housing
Chesapeake Biological Laboratory
Climates of the World
Climatography of the United States
Clinical Journal of Sports Medicine
CNBC
CNN/USA TODAY
Coleman \& Associates, Inc.
College Bound Seniors Total Group Profile Report

College Entrance Examination Board
Communications Industry Forecast \& Report
Compendium of Federal Justice Statistics
Conde Nast Bridal Group
Congressional Directory
Consumer Expenditure Survey
Consumer Reports
Contributions to Boyce Thompson Institute
Controlling Road Rage: A Literature Review and Pilot Study
Crime in the United States
Criminal Justice and Behavior
CTIA-The Wireless Association
Current Housing Reports
Current Population Reports
Current Population Survey
Daily Mail
Daily Racing Form
Dallas Mavericks Roster
DataGenetics
Dave Leip's Atlas of U.S. Presidential Elections
Deep Sea Research Part I: Oceanographic Research Papers
Demographic Profiles
Demography
Department of Information Resources and Communications
Desert Samaritan Hospital
Dietary Guidelines for Americans
Dietary Reference Intakes
Digest of Education Statistics
Discover
Early Medieval Europe
Eastern Mediterranean Health Journal
Ecology
Economic Development Corporation Report
Edinburgh Medical and Surgical Journal
Edison Research
Edmunds.com
Educational Attainment in the United States
Educational Research
Educational Testing Service
eMarketer
Employment and Earnings
Energy Information Administration
ESPN
ESPN MLB Scoreboard
Everyday Health Network
Experimental Agriculture
Experimental Brain Research
Family Planning Perspectives
Federal Bureau of Investigation
Federal Bureau of Prisons
Federal Highway Administration
Federal Highway Administration Annual Highway Statistics
Federal Reserve System
Financial Planning
FlightStats On-time Performance Report Summary
Florida Department of Environmental Protection

Florida State Center for Health Statistics
Food Consumption, Prices, and
Expenditures
Footwear News
Forbes
Forest Mensuration
Fortune Magazine
Friends of the Earth
Fuel Economy Guide
Gallup Poll
Gallup, Inc.
Geography
Georgia State University
Global Attractions Attendance Report
Global Index of Religiosity and Atheism
Golf Laboratories, Inc.
Golf.com
Governors' Political Affiliations \& Terms of Office
Graduating Student and Alumni Survey
GRE Guide to the Use of Scores
Hanna Properties
Harris Interactive
Harris Poll
Harvard University
Higher Education Research Institute
Highway Construction Safety and the Aging Driver
Highway Statistics
Hilton Hotels Corporation
Hirslanden Clinic
Historical Income Tables
HIV Surveillance Report
Hospital Statistics
HuffPost
HuffPost Style
Human Biology
Hydrobiologia
Income, Poverty and Health Insurance Coverage in the United States
Industry Research
Information Please Almanac
Inside MS
Institute of Medicine of the National Academy of Sciences
Internal Revenue Service
International Classification of Diseases
International Communications Research
International Data Base
International Journal of Public Health
Iowa Agriculture Experiment Station
Japan Automobile Manufacturer's Association
Japan Statistics Bureau
JAVMA News
Joint Committee on Printing
Journal of Abnormal Psychology
Journal of Advertising Research
Journal of American College Health
Journal of Anaesthesiology Clinical Pharmacology
Journal of Anatomy
Journal of Applied Ecology

Journal of Applied Ichthyology
Journal of Applied Research in Higher Education
Journal of Applied Social Psychology
Journal of Applied Sport Psychology
Journal of Bone and Joint Surgery
Journal of Chemical Ecology
Journal of Child Nutrition and Management
Journal of Chronic Diseases
Journal of Clinical Endocrinology \& Metabolism
Journal of Clinical Oncology
Journal of Early Adolescence
Journal of Environmental Psychology
Journal of Environmental Science and Health
Journal of Experimental Biology
Journal of Experimental Social Psychology
Journal of Forensic Identification
Journal of Gerontology Series A: Biological Sciences and Medical Sciences
Journal of Health, Population and Nutrition
Journal of Herpetology
Journal of Human Evolution
Journal of Mammalogy
Journal of Nutrition
Journal of Organizational Behavior
Journal of Paleontology
Journal of Pediatrics
Journal of Physical Medicine and Rehabilitation
Journal of Poverty \& Social Justice
Journal of Pregnancy
Journal of Prosthetic Dentistry
Journal of Real Estate and Economics
Journal of Statistics Education
Journal of Sustainable Tourism
Journal of the American Academy of Child and Adolescent Psychiatry
Journal of the American Geriatrics Society
Journal of the American Medical Association
Journal of the American Public Health Association
Journal of Tropical Ecology
Journal of Water Resources Planning and Management
Journal of Wildlife Management
Journal of Zoology, London
Journalism \& Mass Communication Quarterly
Kelley Blue Book
Kelley Blue Book Company
Kennedy: The Classical Biography
Labor Force Statistics
Land Economics
Lawlink
Leonard Maltin Movie Guide
Life Expectancy at Birth
Life Insurers Fact Book
Literary Digest
Los Angeles Times
Main Economic Indicators

Mammalia
Manufactured Housing Statistics
Marine Ecology Progress Series
Marine Mammal Science
Mayo Clinical Proceedings
Medical Biology and Etruscan Origins
Medical Principles and Practice
Medicine and Science in Sports \& Exercise
Mega Millions
Mellman Group
Merck Manual
Minitab Inc.
MLB.com
Money Stock Measures
Monitoring the Future
Monthly Labor Review
Monthly Tornado Statistics
Morningstar
Morrison Planetarium
Motor Vehicle Statistics of Japan
Motorcycle USA
National Aeronautics and Space Administration
National Agricultural Statistics Service
National Anti-Vivisection Society
National Association of Colleges and Employers
National Association of State Racing Commissioners
National Basketball Association
National Cancer Institute
National Center for Education Statistics
National Center for Health Statistics
National Collegiate Athletic Association
National Corrections Reporting Program
National Education Association
National Geographic
National Geographic Society
National Governors Association
National Health and Nutrition Examination Survey
National Health Interview Study
National Health Interview Survey
National Highway Traffic Safety Administration
National Household Travel Survey, Summary of Travel Trends
National Hurricane Center
National Institute of Aging
National Institute of Child Health and Human Development Neonatal Research Network
National Institute of Hygiene
National Institute of Mental Health
National Institute on Drug Abuse
National Interagency Fire Center
National Longitudinal Survey of Youth
National Low Income Housing Coalition
National Mortgage News
National Oceanic and Atmospheric Administration
National Safety Council
National Science Foundation

National Survey on Drug Use and Health
National Vital Statistics Reports
Nature
NCAA.com
New England Journal of Medicine
New Scientist
New York Times
Newsweek
Nielsen Media Research
Nielsen Report on Television
Nigerian Medical Journal
Nutrition
Obstetrics \& Gynecology
Occupant Restraint Use
OECD in Figures
Office of Aviation Enforcement and Proceedings
Office of Justice Programs
Opinion Research Corporation
Organisation for Economic Co-operation and Development
Origin of Species
Osteoporosis International
Out of Reach
Parade Magazine
Payless ShoeSource
Peacecorps.org
Pediatric Research
Pediatrics
Penn Schoen Berland
Pew Forum on Religion and Public Life
Pew Internet \& American Life Project
PGA TOUR
Phoenix Gazette
Physician Specialty Data Book
PIN analysis
Player Roster
PLOS Biology
PLOS ONE
Pollstar
Popular Mechanics
Population-at-Risk Rates and Selected Crime Indicators
Preventative Medicine
pricewatch.com
Primetime Broadcast Programs
Prison Statistics
Proceedings of the 6th Berkeley Symposium on Mathematics and Statistics, VI
Proceedings of the National Academy of Science USA
Proceedings of the Royal Society of London
Professional Golfers' Association of America
Psychology of Addictive Behaviors
Pulse Opinion Research, LLC
Quality Engineering
Quinnipiac University
R. L. Polk \& Co.
R. R. Bowker Company

Ranking of the States and Estimates of School Statistics
Rasmussen Reports

Recording Industry Association of America
Religious Landscape Survey
Research Quarterly for Exercise and Sport
Research Resources, Inc.
Residential Energy Consumption Survey:
Consumption and Expenditures
Richard's Heating and Cooling
Roche
Roper Starch Worldwide, Inc.
Rubber Age
Runner's World
Salary Survey
Scarborough Research
Science
Science and Engineering Indicators
Science News
Scientific American
Scottish Executive
Semi-annual Wireless Survey
Sexually Transmitted Disease Surveillance
Significance Magazine
Sneak Previews
Snell, Perry and Associates
Soccer \& Society
Social Forces
South Carolina Budget and Control Board
South Carolina Statistical Abstract
Sports Illustrated
Sports Illustrated Sites
SportsCenturyRetrospective
Stanford Revision of the Binet-Simon
Intelligence Scale
Statistical Abstract of the United States
Statistical Report
Statistical Summary of Students and Staff
Statistical Yearbook
Statistics Norway
Statistics of Income, Individual Income Tax Returns
Stock Performance Guide
Stockholm Transit District
Storm Prediction Center
Summary of Travel Trends
Survey of Consumer Finances
Survey of Current Business
Survey of Graduate Science Engineering Students and Postdoctorates
TalkBack Live
Teaching Issues and Experiments in Ecology
Technometrics
Television Bureau of Advertising
Tempe Daily News
Texas Comptroller of Public Accounts
The AMATYC Review
The American Freshman
The American Statistician
The Bowker Annual Library and Book Trade Almanac
The Business Journal
The Cross-Platform Report
The Design and Analysis of Factorial Experiments

The Earth: Structure, Composition and Evolution
The Geyser Observation and Study Association
The History of Statistics
The Infinite Dial
The Journal of Arachnology
The Lancet
The Marathon: Physiological, Medical, Epidemiological, and Psychological Studies
The Methods of Statistics
The Nielsen Company
The Open University
The Plant Cell
The Street
The World Bank
Themed Entertainment Association
Thoroughbred Times
TIME
Time Spent Viewing
Times Higher Education
TNS Intersearch
Trade \& Environment Database (TED) Case Studies
Trademark Reporter
Travel + Leisure Golf
Trends in Television
Tropical Biodiversity
Tropical Cyclone Report
TV Basics
TVbytheNumbers
U.S. Agency for International Development
U.S. Agricultural Trade Update
U.S. Bureau of Citizenship and Immigration Services
U.S. Bureau of Economic Analysis
U.S. Census Bureau
U.S. Coast Guard
U.S. Congress, Joint Committee on Printing
U.S. Department of Agriculture
U.S. Department of Commerce
U.S. Department of Education
U.S. Department of Energy
U.S. Department of Health and Human Services
U.S. Department of Housing and Urban Development
U.S. Department of Justice
U.S. Energy Information Administration
U.S. Environmental Protection Agency
U.S. Federal Highway Administration
U.S. Geological Survey
U.S. National Center for Health Statistics
U.S. News and World Report
U.S. Overseas Loans and Grants
U.S. Substance Abuse and Mental Health

Services Administration
U.S. Women's Open

Ultrasound in Medicine and Biology
Uniform Crime Reports
University of Delaware
University of Helsinki
University of Malaysia

University of Maryland
University of Nevada, Las Vegas
Urban Studies
USA TODAY
Usability News
Vegetarian Journal
Vegetarian Resource Group
VentureOne Corporation
Veronis Suhler Stevenson
Vital and Health Statistics
Vital Statistics of the United States
Wall Street Journal
Washington Post
Weekly Retail Gasoline and Diesel Prices
Wichita Eagle
Wikipedia
WIN-Gallup International
Women and Cardiovascular Disease Hospitalizations
Women's Health Initiative
WONDER database
World Almanac
World FactBook
World Meteorological Association
World Series History
www.house.gov
Yahoo! Contributor Network
Year-End Industry Shipment and Revenue Statistics
YouGov
Zillow.com
Zogby International

This page intentionally left blank

Elementary STATISTICS

9TH EDITION

This page intentionally left blank

The Nature of Statistics

CHAPTER OBJECTIVES

What does the word statistics bring to mind? To most people, it suggests numerical facts or data, such as unemployment figures, farm prices, or the number of marriages and divorces. Two common definitions of the word statistics are as follows:

1. [used with a plural verb] facts or data, either numerical or nonnumerical, organized and summarized so as to provide useful and accessible information about a particular subject.
2. [used with a singular verb] the science of organizing and summarizing numerical or nonnumerical information.
Statisticians also analyze data for the purpose of making generalizations and decisions. For example, a political analyst can use data from a portion of the voting population to predict the political preferences of the entire voting population, or a city council can decide where to build a new airport runway based on environmental impact statements and demographic reports that include a variety of statistical data.

In this chapter, we introduce some basic terminology so that the various meanings of the word statistics will become clear to you. We also examine two primary ways of producing data, namely, through sampling and experimentation. We discuss sampling designs in Sections 1.2 and 1.3 and experimental designs in Section 1.4.

CASE STUDY

Top Films of All Time

Honoring the 10th anniversary of its award-winning series, the American Film Institute (AFI) again conducted
a poll of 1500 film artists, critics, and historians, asking them to pick their 100 favorite films from a list of 400 . The films on the list were made between 1915 and 2005.

After tallying the responses, AFI compiled a list representing the top 100 films. Citizen Kane, made in 1941, again finished in first place, followed by The Godfather, which was made in 1972. The following table shows the top 40 finishers in the poll. [SOURCE: Data from AFI's 100 Years. . 100 Movies 10th Anniversary Edition. Published by the American Film Institute.]

CHAPTER OUTLINE

1.1 Statistics Basics

1.2 Simple Random Sampling
1.3 Other Sampling
Designs*
1.4 Experimental Designs*

Rank	Film	Year	Rank	Film	Year
1	Citizen Kane	1941	21	Chinatown	1974
2	The Godfather	1972	22	Some Like It Hot	1959
3	Casablanca	1942	23	The Grapes of Wrath	1940
4	Raging Bull	1980	24	E.T. The Extra-Terrestrial	1982
5	Singin' in the Rain	1952	25	To Kill a Mockingbird	1962
6	Gone with the Wind	1939	26	Mr. Smith Goes to Washington	1939
7	Lawrence of Arabia	1962	27	High Noon	1952
8	Schindler's List	1993	28	All About Eve	1950
9	Vertigo	1958	29	Double Indemnity	1944
10	The Wizard of Oz	1939	30	Apocalypse Now	1979
11	City Lights	1931	31	The Maltese Falcon	1941
12	The Searchers	1956	32	The Godfather Part II	1974
13	Star Wars	1977	33	One Flew Over the Cuckoo's Nest	1975
14	Psycho	1960	34	Snow White and the Seven Dwarfs	1937
15	2001: A Space Odyssey	1968	35	Annie Hall	1977
16	Sunset Blvd.	1950	36	The Bridge on the River Kwai	1957
17	The Graduate	1967	37	The Best Years of Our Lives	1946
18	The General	1927	38	The Treasure of the Sierra Madre	1948
19	On the Waterfront	1954	39	Dr. Strangelove	1964
20	It's a Wonderful Life	1946	40	The Sound of Music	1965

Armed with the knowledge that you gain in this chapter, you will be
asked to further analyze this AFI poll at the end of the chapter.

You probably already know something about statistics. If you read newspapers, surf the Web, watch the news on television, or follow sports, you see and hear the word statistics frequently. In this section, we use familiar examples such as baseball statistics and voter polls to introduce the two major types of statistics: descriptive statistics and inferential statistics. We also introduce terminology that helps differentiate among various types of statistical studies.

Descriptive Statistics

Each spring in the late 1940s, President Harry Truman officially opened the major league baseball season by throwing out the "first ball" at the opening game of the Washington Senators. We use the 1948 baseball season to illustrate the first major type of statistics, descriptive statistics.

EXAMPLE 1.1 Descriptive Statistics

The 1948 Baseball Season In 1948, the Washington Senators (Nationals) played 153 games, winning 56 and losing 97. They finished seventh in the American League and were led in hitting by Bud Stewart, whose batting average was .279 . Baseball statisticians compiled these and many other statistics by organizing the complete records for each game of the season.

Although fans take baseball statistics for granted, much time and effort is required to gather and organize them. Moreover, without such statistics, baseball would be much harder to follow. For instance, imagine trying to select the best hitter in the American League given only the official score sheets for each game. (More than 600 games were played in 1948; the best hitter was Ted Williams, who led the league with a batting average of .369.)

The work of baseball statisticians is an illustration of descriptive statistics.

DEFINITION 1.1

Descriptive Statistics
Descriptive statistics consists of methods for organizing and summarizing information.

Descriptive statistics includes the construction of graphs, charts, and tables and the calculation of various descriptive measures such as averages, measures of variation, and percentiles. We discuss descriptive statistics in detail in Chapters 2 and 3.

Inferential Statistics

We use the 1948 presidential election to introduce the other major type of statistics, inferential statistics.

EXAMPLE 1.2 Inferential Statistics

The 1948 Presidential Election In the fall of 1948, President Truman was concerned about statistics. The Gallup Poll taken just prior to the election predicted that he would win only 44.5% of the vote and be defeated by the Republican nominee, Thomas E. Dewey. But the statisticians had predicted incorrectly. Truman won more than 49% of the vote and, with it, the presidency. The Gallup Organization modified some of its procedures and has correctly predicted the winner ever since.

Political polling provides an example of inferential statistics. Interviewing everyone of voting age in the United States on their voting preferences would be expensive and unrealistic. Statisticians who want to gauge the sentiment of the entire population of U.S. voters can afford to interview only a carefully chosen group of a few thousand voters. This group is called a sample of the population. Statisticians analyze the information obtained from a sample of the voting population to make inferences (draw conclusions) about the preferences of the entire voting population. Inferential statistics provides methods for drawing such conclusions.

The terminology just introduced in the context of political polling is used in general in statistics.

Population and Sample

Population: The collection of all individuals or items under consideration in a statistical study.
Sample: That part of the population from which information is obtained.

Figure 1.1 on the following page depicts the relationship between a population and a sample from the population.

Now that we have discussed the terms population and sample, we can define inferential statistics.

Inferential Statistics

Inferential statistics consists of methods for drawing and measuring the reliability of conclusions about a population based on information obtained from a sample of the population.

FIGURE 1.1
Relationship between population and sample

Population

Descriptive statistics and inferential statistics are interrelated. You must almost always use techniques of descriptive statistics to organize and summarize the information obtained from a sample before carrying out an inferential analysis. Furthermore, as you will see, the preliminary descriptive analysis of a sample often reveals features that lead you to the choice of (or to a reconsideration of the choice of) the appropriate inferential method.

Classifying Statistical Studies

As you proceed through this book, you will obtain a thorough understanding of the principles of descriptive and inferential statistics. In this section, you will classify statistical studies as either descriptive or inferential. In doing so, you should consider the purpose of the statistical study.

If the purpose of the study is to examine and explore information for its own intrinsic interest only, the study is descriptive. However, if the information is obtained from a sample of a population and the purpose of the study is to use that information to draw conclusions about the population, the study is inferential.

Thus, a descriptive study may be performed either on a sample or on a population. Only when an inference is made about the population, based on information obtained from the sample, does the study become inferential.

Examples 1.3 and 1.4 further illustrate the distinction between descriptive and inferential studies. In each example, we present the result of a statistical study and classify the study as either descriptive or inferential. Classify each study yourself before reading our explanation.

EXAMPLE 1.3 Classifying Statistical Studies

The 1948 Presidential Election Table 1.1 displays the voting results for the 1948 presidential election.

TABLE 1.1
Final results of the 1948 presidential election

Exercise 1.7 on page 7

Ticket	Votes	Percentage
Truman-Barkley (Democratic)	(Republican)	$21,179,345$
Dewey-Warren (Rep	49.7	
Thurmond-Wright (States Rights)	$1,176,125$	45.2
Wallace-Taylor (Progressive)	$1,157,326$	2.4
Thomas-Smith (Socialist)	139,572	0.3

Classification This study is descriptive. It is a summary of the votes cast by U.S. voters in the 1948 presidential election. No inferences are made.

EXAMPLE 1.4 Classifying Statistical Studies

Testing Baseballs For the 101 years preceding 1977, the major leagues purchased baseballs from the Spalding Company. In 1977, that company stopped manufacturing major league baseballs, and the major leagues then bought their baseballs from the Rawlings Company.

Early in the 1977 season, pitchers began to complain that the Rawlings ball was "livelier" than the Spalding ball. They claimed it was harder, bounced farther and faster, and gave hitters an unfair advantage. Indeed, in the first 616 games of 1977, 1033 home runs were hit, compared to only 762 home runs hit in the first 616 games of 1976.

Sports Illustrated magazine sponsored a study of the liveliness question and published the results in the article "They're Knocking the Stuffing Out of It" (Sports Illustrated, June 13, 1977, pp. 23-27) by L. Keith. In this study, an independent testing company randomly selected 85 baseballs from the current (1977) supplies of various major league teams. It measured the bounce, weight, and hardness of the chosen baseballs and compared these measurements with measurements obtained from similar tests on baseballs used in 1952, 1953, 1961, 1963, 1970, and 1973.

The conclusion was that "...the 1977 Rawlings ball is livelier than the 1976 Spalding, but not as lively as it could be under big league rules, or as the ball has been in the past."

Classification This study is inferential. The independent testing company used a sample of 85 baseballs from the 1977 supplies of major league teams to make an inference about the population of all such baseballs. (An estimated 360,000 baseballs were used by the major leagues in 1977.)

Exercise 1.9 on page 7

> What Does It Mean?
> An understanding of statistical reasoning and of the basic concepts of descriptive and inferential statistics has become mandatory for virtually everyone, in both their private and professional lives.

The Sports Illustrated study also shows that it is often not feasible to obtain information for the entire population. Indeed, after the bounce and hardness tests, all of the baseballs sampled were taken to a butcher in Plainfield, New Jersey, to be sliced in half so that researchers could look inside them. Clearly, testing every baseball in this way would not have been practical.

The Development of Statistics

Historically, descriptive statistics appeared before inferential statistics. Censuses were taken as long ago as Roman times. Over the centuries, records of such things as births, deaths, marriages, and taxes led naturally to the development of descriptive statistics.

Inferential statistics is a newer arrival. Major developments began to occur with the research of Karl Pearson (1857-1936) and Ronald Fisher (1890-1962), who published their findings in the early years of the twentieth century. Since the work of Pearson and Fisher, inferential statistics has evolved rapidly and is now applied in a myriad of fields.

Familiarity with statistics will help you make sense of many things you read in newspapers and magazines and on the Internet. For instance, could the Sports Illustrated baseball test (Example 1.4), which used a sample of only 85 baseballs, legitimately draw a conclusion about 360,000 baseballs? After working through Chapter 9, you will understand why such inferences are reasonable.

Observational Studies and Designed Experiments

Besides classifying statistical studies as either descriptive or inferential, we often need to classify them as either observational studies or designed experiments. In an observational study, researchers simply observe characteristics and take measurements, as in a sample survey. In a designed experiment, researchers impose
treatments and controls (discussed in Section 1.4) and then observe characteristics and take measurements. Observational studies can reveal only association, whereas designed experiments can help establish causation.

Note that, in an observational study, someone is observing data that already exist (i.e., the data were there and would be there whether someone was interested in them or not). In a designed experiment, however, the data do not exist until someone does something (the experiment) that produces the data. Examples 1.5 and 1.6 illustrate some major differences between observational studies and designed experiments.

EXAMPLE 1.5 An Observational Study

Vasectomies and Prostate Cancer Approximately 450,000 vasectomies are performed each year in the United States. In this surgical procedure for contraception, the tube carrying sperm from the testicles is cut and tied.

Several studies have been conducted to analyze the relationship between vasectomies and prostate cancer. The results of one such study by E. Giovannucci et al. appeared in the paper "A Retrospective Cohort Study of Vasectomy and Prostate Cancer in U.S. Men" (Journal of the American Medical Association, Vol. 269(7), pp. 878-882).

Dr. Giovannucci, study leader and epidemiologist at Harvard-affiliated Brigham and Women's Hospital, said that "... we found 113 cases of prostate cancer among 22,000 men who had a vasectomy. This compares to a rate of 70 cases per 22,000 among men who didn't have a vasectomy."

The study shows about a 60% elevated risk of prostate cancer for men who have had a vasectomy, thereby revealing an association between vasectomy and prostate cancer. But does it establish causation: that having a vasectomy causes an increased risk of prostate cancer?

The answer is no, because the study was observational. The researchers simply observed two groups of men, one with vasectomies and the other without. Thus, although an association was established between vasectomy and prostate cancer, the association might be due to other factors (e.g., temperament) that make some
men more likely to have vasectomies and also put them at greater risk of prostate cancer.

EXAMPLE 1.6 A Designed Experiment

Folic Acid and Birth Defects For several years, evidence had been mounting that folic acid reduces major birth defects. Drs. A. E. Czeizel and I. Dudas of the National Institute of Hygiene in Budapest directed a study that provided the strongest evidence to date. Their results were published in the paper "Prevention of the First Occurrence of Neural-Tube Defects by Periconceptional Vitamin Supplementation" (New England Journal of Medicine, Vol. 327(26), p. 1832).

For the study, the doctors enrolled 4753 women prior to conception and divided them randomly into two groups. One group took daily multivitamins containing 0.8 mg of folic acid, whereas the other group received only trace elements (minute amounts of copper, manganese, zinc, and vitamin C). A drastic reduction in the rate

Exercise 1.21 on page 8 of major birth defects occurred among the women who took folic acid: 13 per 1000, as compared to 23 per 1000 for those women who did not take folic acid.

In contrast to the observational study considered in Example 1.5, this is a designed experiment and does help establish causation. The researchers did not simply observe two groups of women but, instead, randomly assigned one group to take daily doses of folic acid and the other group to take only trace elements.

Exercises 1.1

Understanding the Concepts and Skills

1.1 Define the following terms:
a. Population
b. Sample
1.2 What are the two major types of statistics? Describe them in detail.
1.3 Identify some methods used in descriptive statistics.
1.4 Explain two ways in which descriptive statistics and inferential statistics are interrelated.
1.5 Define the following terms:
a. Observational study
b. Designed experiment
1.6 Fill in the following blank: Observational studies can reveal only association, whereas designed experiments can help establish \qquad _.

Applying the Concepts and Skills

In Exercises 1.7-1.12, classify each of the studies as either descriptive or inferential. Explain your answers.
1.7 TV Viewing Times. Data from a sample of Americans yielded the following estimates of average TV viewing time per month for all Americans 2 years old and older. The times are in hours and minutes; Q1 stands for first quarter. [SOURCE: The Cross-Platform Report, Quarter 1, 2011. Published by The Nielsen Company, (c) 2011.]

Viewing method	Q1 2011	Q1 2010	Change (\%)
Watching TV in the home	$158: 47$	$158: 25$	0.2
Watching timeshifted TV	$10: 46$	$9: 36$	12.2
DVR playback	$26: 14$	$25: 48$	1.7
Using the Internet on a computer	$25: 33$	$25: 54$	-1.4
Watching video on the Internet Mobile subscribers watching video on a mobile phone	$4: 20$	$3: 33$	$3: 23$

1.8 Professional Athlete Salaries. From the Statistical Abstract of the United States and the article "Average Salaries in the NBA, NFL, MLB and NHL" by J. Dorish, published on the Yahoo! Contributor Network, we obtained the following data on average professional athletes' salaries for the years 2005 and 2011.

Sport	Average salary (\$millions)	
	$\mathbf{2 0 0 5}$	$\mathbf{2 0 1 1}$
	2.48	3.31
Basketball (NBA)	4.04	5.15
Football (NFL)	1.40	1.90

1.9 Home Sales. Zillow.com is an online database that provides real estate information for U.S. homes that are for rent or sale. It also presents statistics on recently sold homes. The following table gives various information on all homes sold in several different cities across the United States for the month of September 2012.

City	Price per square foot	Sale to list price ratio	\% foreclosure re-sales
Scottsdale, AZ	$\$ 167$	0.973	12.43%
Washington, DC	$\$ 436$	0.990	2.88%
San Francisco, CA	$\$ 636$	1.026	6.55%
Las Vegas, NV	$\$ 74$	1.000	19.45%
Nashville, TN	$\$ 106$	0.973	18.09%

1.10 Drug Use. The U.S. Substance Abuse and Mental Health Services Administration collects and publishes data on nonmedical drug use, by type of drug and age group, in National Survey on Drug Use and Health. The following table provides data for the years 2003 and 2008. The percentages shown are estimates for the entire nation based on information obtained from a sample (NA, not available).

Type of drug	Percentage, 18-25 years old			
	Ever used		Current user	
	$\mathbf{2 0 0 3}$	$\mathbf{2 0 0 8}$	$\mathbf{2 0 0 3}$	$\mathbf{2 0 0 8}$
Any illicit drug	60.5	56.6	20.3	19.6
Marijuana and hashish	53.9	50.4	17.0	16.5
Cocaine	15.0	14.4	2.2	1.5
Hallucinogens	23.3	17.7	1.7	1.7
Inhalants	14.9	10.4	0.4	0.3
Any psychotherapeutic	29.0	29.2	6.0	5.9
Alcohol	87.1	85.6	61.4	61.2
"Binge" alcohol use	NA	NA	41.6	41.8
Cigarettes	70.2	64.2	40.2	35.7
Smokeless tobacco	22.0	20.3	4.7	5.4
Cigars	45.2	41.4	11.4	11.3

1.11 Dow Jones Industrial Averages. From the Stock Performance Guide, published online by 1 stock1 on the website 1Stock1.com, we found the closing values of the Dow Jones Industrial Averages as of the end of December for the years 2004 through 2013.

Year	Closing
2004	$10,783.01$
2005	$10,717.50$
2006	$12,463.15$
2007	$13,264.82$
2008	$8,776.39$
2009	$10,428.05$
2010	$11,577.51$
2011	$12,217.56$
2012	$13,104.14$
2013	$16,576.66$

1.12 In-Demand College Majors. In a June 2013 article, published online by The Street, B. O'Connell discussed the results of a survey on opportunities for graduating college students. In one aspect of the survey, the following percentage estimates were reported on which college majors were in demand among U.S. firms. [SOURCE: "The Most In-Demand College Majors This Year." Published by CareerBuilder, LLC, © 2013.]

Major	Percentage of U.S. firms
Business studies	31%
Computer sciences	24%
Engineering	17%
Health care sciences	10%
Engineering technologies	9%
Math and statistics	9%
Communications	7%
Education	7%
Science technology	6%
Liberal arts	6%

1.13 Thoughts on Evolution. In an article titled "Who has designs on your student's minds?" (Nature, Vol. 434, pp. 1062-1065), author G. Brumfiel postulated that support for Darwinism increases with level of education. The following table provides percentages of U.S. adults, by educational level, who believe that evolution is a scientific theory well supported by evidence.

Education	Percentage
Postgraduate education	65%
College graduate	52%
Some college education	32%
High school or less	20%

a. Do you think that this study is descriptive or inferential? Explain your answer.
b. If, in fact, the study is inferential, identify the sample and population.
1.14 Big-Banks Break-up. A nationwide survey of 1000 U.S. adults, conducted in March 2013 by Rasmussen Reports (field work by Pulse Opinion Research, LLC), found that 50% of respondents favored a plan to break up the 12 megabanks, which then controlled about 69% of the banking industry.
a. Identify the population and sample for this study.
b. Is the percentage provided a descriptive statistic or an inferential statistic? Explain your answer.
1.15 Genocide. The document "American Attitudes about Genocide" provided highlights of a nationwide poll with 1000 participants. The survey, conducted by Penn Schoen Berland between June 30 and July 10, 2012, revealed that " 66% of respondents believe that genocide is preventable."
a. Is the statement in quotes an inferential or a descriptive statement? Explain your answer.
b. Based on the same information, what if the statement had been " 66% of Americans believe that genocide is preventable"?
1.16 Vasectomies and Prostate Cancer. Refer to the vasectomy/ prostate cancer study discussed in Example 1.5 on page 6.
a. How could the study be modified to make it a designed experiment?
b. Comment on the feasibility of the designed experiment that you described in part (a).

In Exercises 1.17-1.22, state whether the investigation in question is an observational study or a designed experiment. Justify your answer in each case.
1.17 The Salk Vaccine. In the 1940s and early 1950s, the public was greatly concerned about polio. In an attempt to prevent this disease, Jonas Salk of the University of Pittsburgh developed a polio vaccine. In a test of the vaccine's efficacy, involving nearly 2 million grade-school children, half of the children received the Salk vaccine; the other half received a placebo, in this case an injection of salt dissolved in water. Neither the children nor the doctors performing the diagnoses knew which children belonged to which group, but an evaluation center did. The center found that the incidence of polio was far less among the children inoculated with the Salk vaccine. From that information, the researchers concluded that the vaccine would be effective in preventing polio for all U.S. school children; consequently, it was made available for general use.
1.18 Do Left-Handers Die Earlier? According to a study published in the Journal of the American Public Health Association, lefthanded people do not die at an earlier age than right-handed people, contrary to the conclusion of a highly publicized report done 2 years earlier. The investigation involved a 6 -year study of 3800 people in East Boston older than age 65. Researchers at Harvard University and the National Institute of Aging found that the "lefties" and "righties" died at exactly the same rate. "There was no difference, period," said Dr. J. Guralnik, an epidemiologist at the institute and one of the coauthors of the report.
1.19 Sex, Sleep, and PTSD. In the article, "One's Sex, Sleep, and Posttraumatic Stress Disorder" (Biology of Sex Differences, Vol. 3, No. 29, pp. 1-7), I. Kobayashi et al. study the relationship between one's sex, sleep patterns, and posttraumatic stress disorder (PTSD) after trauma exposure. The authors report that women have a higher lifetime prevalence of PTSD as well as a greater risk of developing PTSD following trauma exposure. Relationships between sleep and physical health have been documented in a number of studies, and the authors explore the possibility that disruptive sleep habits are common among people with PTSD and also a possible risk factor for the development of PTSD. A questionnaire of men and women with and without PTSD produced data on their sleep habits.
1.20 Aspirin and Cardiovascular Disease. In the article by P. Ridker et al. titled "A Randomized Trial of Low-dose Aspirin in the Primary Prevention of Cardiovascular Disease in Women" (New England Journal of Medicine, Vol. 352, pp. 1293-1304), the researchers noted that "We randomly assigned 39,876 initially healthy women 45 years of age or older to receive 100 mg of aspirin or placebo on alternate days and then monitored them for 10 years for a first major cardiovascular event (i.e., nonfatal myocardial infarction, nonfatal stroke, or death from cardiovascular causes)."
1.21 Heart Failure. In the paper "Cardiac-Resynchronization Therapy with or without an Implantable Defibrillator in Advanced Chronic Heart Failure" (New England Journal of Medicine, Vol. 350, pp. 2140-2150), M. Bristow et al. reported the results of a study of methods for treating patients who had advanced heart failure due to ischemic or nonischemic cardiomyopathies. A total of 1520 patients were randomly assigned in a 1:2:2 ratio to receive optimal pharmacologic therapy alone or in combination with either a pacemaker or a pacemaker-defibrillator combination. The patients were then observed until they died or were hospitalized for any cause.
1.22 Starting Salaries. The National Association of Colleges and Employers (NACE) compiles information on salary offers to new college graduates and publishes the results in Salary Survey.

Extending the Concepts and Skills

1.23 Ballistic Fingerprinting. In an on-line press release, ABCNews.com reported that "... 73 percent of Americans...favor a law that would require every gun sold in the United States to be test-fired first, so law enforcement would have its fingerprint in case it were ever used in a crime."
a. Do you think that the statement in the press release is inferential or descriptive? Can you be sure?
b. Actually, ABCNews .com conducted a telephone survey of a random national sample of 1032 adults and determined that 73% of them favored a law that would require every gun sold in the United States to be test-fired first, so law enforcement would have its fingerprint in case it were ever used in a crime. How would you rephrase the statement in the press release to make clear that it is a descriptive statement? an inferential statement?
1.24 Causes of Death. The National Center for Health Statistics published the following data on the leading causes of death in 2010 in National Vital Statistics Reports. Deaths are classified according to the tenth revision of the International Classification of Diseases. Rates are per 100,000 population.

Rank	Cause of death	Rate
1	Diseases of the heart	193.6
2	Malignant neoplasms	186.2
3	Chronic lower respiratory diseases	44.7
4	Cerebrovascular diseases	41.9
5	Accidents (unintentional injuries)	39.1
6	Alzheimer's disease	27.0
7	Diabetes mellitus	22.4

Do you think that these rates are descriptive statistics or inferential statistics? Explain your answer.
1.25 Medical Testing on Animals. In its Summer 2013 Animal Action Report, the National Anti-Vivisection Society stated that " 59% of Americans between the ages of 18 and 29 oppose medical testing on animals." The percentage of 59% was computed from sample data.
a. Identify the population under consideration.
b. Identify the sample under consideration.
c. Is the statement in quotes descriptive or inferential?
d. If you wanted to make it clear that the the percentage of 59% was computed from sample data, how would you rephrase the statement in quotes?
1.26 Lobbying Congress. In the special report, "Bitter Pill: Why Medical Bills Are Killing Us" (TIME, Vol. 181, No. 8, 2013), S. Brill presented an in-depth investigation of hospital billing practices that reveals why U.S. health care spending is out of control. One of the many statistics provided in the report is that, during the period from 1998 through 2012, the pharmaceutical and health-care-products industries and organizations representing doctors, hospitals, nursing homes, health services, and HMOs spent $\$ 5.36$ billion lobbying Congress.
a. Under what conditions would the $\$ 5.36$ billion lobbyingexpenditure figure be a descriptive statistic? Explain your answer.
b. Under what conditions would the $\$ 5.36$ billion lobbyingexpenditure figure be an inferential statistic? Explain your answer.

What Does It Mean?
You can often avoid the effort and expense of a study if someone else has already done that study and published the results.

Throughout this book, we present examples of organizations or people conducting studies: A consumer group wants information about the gas mileage of a particular make of car, so it performs mileage tests on a sample of such cars; a teacher wants to know about the comparative merits of two teaching methods, so she tests those methods on two groups of students. This approach reflects a healthy attitude: To obtain information about a subject of interest, plan and conduct a study.

Suppose, however, that a study you are considering has already been done. Repeating it would be a waste of time, energy, and money. Therefore, before planning and conducting a study, do a literature search. You do not necessarily need to go through the entire library or make an extensive Internet search. Instead, you might use an information collection agency that specializes in finding studies on specific topics.

Census, Sampling, and Experimentation

If the information you need is not already available from a previous study, you might acquire it by conducting a census-that is, by obtaining information for the entire population of interest. However, conducting a census may be time consuming, costly, impractical, or even impossible.

Two methods other than a census for obtaining information are sampling and experimentation. In much of this book, we concentrate on sampling. However, we introduce experimentation in Section 1.4 and discuss it sporadically throughout the text.

If sampling is appropriate, you must decide how to select the sample; that is, you must choose the method for obtaining a sample from the population. Because the

[^0]: *Indicates optional material.

[^1]: *Indicates optional material.

